Understanding the role of facial asymmetry in human face identification
نویسندگان
چکیده
Face recognition has important applications in forensics (criminal identification) and security (biometric authentication). The problem of face recognition has been extensively studied in the computer vision community, from a variety of perspectives. A relatively new development is the use of facial asymmetry in face recognition, and we present here the results of a statistical investigation of this biometric. We first show how facial asymmetry information can be used to perform three different face recognition tasks—human identification (in the presence of expression variations), classification of faces by expression, and classification of individuals according to sex. Initially, we use a simple classification method, and conduct a feature analysis which shows the particular facial regions that play the dominant role in achieving these three entirely different classification goals. We then pursue human identification under expression changes in greater depth, since this is the most important task from a practical point of view. Two different ways of improving the performance of the simple classifier are then discussed: (i) feature combinations and (ii) the use of resampling techniques (bagging and random subspaces). With these modifications, we succeed in obtaining near perfect classification results on a database of 55 individuals, a statistically significant improvement over the initial results as seen by hypothesis tests of proportions. S. Mitra ( ) Information Sciences Institute,University of Southern California, 4676, Admiralty Way, Suite 1001, Marina del Rey, CA 90292 e-mail: [email protected] N. A. Lazar Department of Statistics, University of Georgia Y. Liu The Robotics Institute, Carnegie Mellon University
منابع مشابه
Using Classical and Resampling Methods for Face Recognition based on Quantified Asymmetry Measures
Face recognition has important applications in psychology and biometric-based authentication, which increases the need for developing automatic face identification systems. Psychologists have long been studying the link between symmetry and attractiveness of the human face, but based on qualitative human judgment alone. The use of objective facial asymmetry information in automatic face recogni...
متن کاملFacial Asymmetry Quantification for Expression Invariant Human Identification
We investigate facial asymmetry as a biometric under expression variation. For the first time, we have defined two types of quantified facial asymmetry measures that are easily computable from facial images and videos. Our findings show that the asymmetry measures of automatically selected facial regions capture individual differences that are relatively stable to facial expression variations. ...
متن کاملComparing sensitivity to facial asymmetry and facial identity
Bilateral symmetry is a facial feature that plays an important role in the aesthetic judgments of faces. The extent to which symmetry contributes to the identification of faces is less clear. We investigated the relationship between facial asymmetry and identity using synthetic face stimuli where the geometric identity of the face can be precisely controlled. Thresholds for all observers were 2...
متن کاملSynthesis of human facial expressions based on the distribution of elastic force applied by control points
Facial expressions play an essential role in delivering emotions. Thus facial expression synthesis gain interests in many fields such as computer vision and graphics. Facial actions are generated by contraction and relaxation of the muscles innervated by facial nerves. The combination of those muscle motions is numerous. therefore, facial expressions are often person specific. But in general, f...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics and Computing
دوره 17 شماره
صفحات -
تاریخ انتشار 2007